
C++ Toolkit Book Introduction to the C++ Toolkit

1-1

1. Introduction to the C++ Toolkit
Created: July 1, 2003
Updated: January 29, 2004

Overview
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
One difficulty in understanding a major piece of software such as the C++ Toolkit is knowing where to begin
in understanding the overall framework or getting the 'big picture' of how all the different components relate
to each other. One approach is to dive into the details of one component and understand it in sufficient
detail to get a roadmap of the rest of the components, and then repeat this process with the other
components. Without a formal road map, this approach can be very time consuming and it may take a long
time to locate the functionality one needs.
When trying to understand a major piece of software, it would be more effective if there is a written text that
explains the overall framework without getting too lost in the details. This chapter is written with the intent to
provide you with this broader picture of the C++ Toolkit.
This chapter provides an introduction to the major components that make up the toolkit. You can use this
chapter as a roadmap for the rest of the chapters that follow.

Chapter Outline
The following is an outline of the topics presented in this chapter:

• The CORELIB Module

• Application Framework

• Argument processing

• Diagnostics

• Environment Interface

• Files and Directories

• MT Test wrappers

C++ Toolkit Book Introduction to the C++ Toolkit

1-2

• Object and Ref classes

• Portability definitions

• Portable Exception Handling

• Portable Process Pipes

• Registry

• STL Use Hints

• Stream Wrappers

• String Manipulations

• Template Utilities

• Threads

• Time

• The ALGORITHM Module

• The CGI Module

• The CONNECT Module

• Socket classes

• Connector and Connection Handles

• Connection Streams

• Sendmail API

• Threaded Server

• The CTOOL Module

• The DBAPI Module

• Database User Classes

• Database Driver Architecture

• The GUI Module

C++ Toolkit Book Introduction to the C++ Toolkit

1-3

• The HTML Module

• Relationships between HTML classes

• HTML Processing

• The OBJECT MANAGER Module

• The SERIAL Module

• The Input Stream Class

• The Output Stream Class

• The Hook Classes

• The UTIL Module

• Checksum

• Console Debug Dump Viewer

• Lightweight Strings

• Range Support

• Weak Map Templates

• Linked Sets

• Random Number Generator

• Registry based DNS

• Resizing Iterator

• Rotating Log Streams

• Stream Support

• String Search

• Thread Pools

• UTF 8 Conversion

C++ Toolkit Book Introduction to the C++ Toolkit

1-4

The CORELIB Module
The C++ Toolkit can be seen as consisting of several major pieces of code that we will refer to as
module. The core module is called, appropriately enough, CORELIB, and provides a portable way
to write C++ code and many useful facilities such as an application framework, argument process-
ing, template utilities, threads, etc. The CORELIB facilities are used by other major modules. The
rest of the sections that follow discusses the CORELIB and the other C++ Toolkit modules in
more detail.

The following is a list of the CORELIB facilities. Note that each facility may be implemented
by a number of C++ classes spread across many files.

• Application Framework

• Argument processing

• Diagnostics

• Environment Interface

• Files and Directories

• MT Test wrappers

• Object and Ref classes

• Portability definitions

• Portable Exception Handling

• Portable Process Pipes

• Registry

• STL Use Hints

• Stream Wrappers

• String Manipulations

• Template Utilities

• Threads

• Time

A brief description of each of each of these facilities are presented in the subsections that
follow:

C++ Toolkit Book Introduction to the C++ Toolkit

1-5

Application Framework
The Application framework primarily consists of an abstract class called CNcbiApplication which
defines the high level behavior of an application. For example, every application upon loading
seems to go through a cycle of doing some initialization, then some processing, and upon com-
pletion of processing, doing some clean up activity before exiting. These three phases are mod-
eled in the CNcbiApplication class as interface methods Init(), Run(), and Exit().

A new application is written by deriving a class from the CNcbiApplication base class and
writing an implementation of the Init(), Run(), and Exit() methods. Execution control to the new
application is passed by calling the application object's AppMain() method inherited from the
CNcbiApplication base class (see Figure 1). The AppMain() method is similar to the main()
method used in C/C++ programs and calls the Init(), Run(), and Exit() methods.

More details on the use of CNcbiApplication class are presented in a later chapter.

Figure 1: The CNcbiApplication class

C++ Toolkit Book Introduction to the C++ Toolkit

1-6

Argument processing
In a C++ program, control is transferred from the command line to the program via the main()
function. The main() function is passed a count of the number of arguments (int argc), and an
array of character strings containing arguments to the program (char** argv). As long as the

argument types are simple, one can simply set up a loop to iterate through the array of argument
values and process them. However, with time applications evolve and grow more complex. Often
there is a need to do some more complex argument checking. For example, the application may
want to enforce a check on the number and position of arguments, check the argument type (int,
string, etc.), check for constraints on argument values, check for flags, check for arguments that
follow a keyword (-logfile mylogfile.log), check for mandatory arguments, display usage help on
the arguments, etc.

To make the above tasks easier, the CORELIB provides a number of portable classes that
encapsulate the functionality of argument checking and processing. The main classes that pro-
vide this functionality are the CArgDescriptions, CArgs, CArgValue classes.

Argument descriptions such as the expected number, type, position, mandatory and optional
attributes are setup during an application's initilization such as the application object's Init()
method (see previous section) by calling the CArgDescriptions class methods. Then, the argu-
ments are extracted by calling the CArgs class methods.

More details on the argument processing are presented in a later chapter.

Diagnostics
It is very useful for an application to post messages about its internal state or other diagnostic
information to a file, console or for that matter any output stream. The CORELIB provides a
portable diagnostics facility that enables an application to post diagnostic messages of various
severity levels to an output stream. This diagnostic facility is provided by the CNcbiDiag class.
You can set the diagnostic stream to the standard error output stream (NcbiErr) or to any other

output stream.
You can set the serverity level of the message to Information, Warning, Error, Critical, Fatal,

or Trace. You can alter the severity level at any time during the use of the diagnostic stream.
More details on diagnostic streams and processing of diagnostic messages is presented in a

later chapters.

Environment Interface
An application can read the environment variable settings (such as PATH) that are in affect when
the application is run. CORELIB defines a portable CNcbiEnvironment class that stores the
environment variable settings and provides applications with methods to get the environment
variable values.

More details on the environment interface are presented in a later chapter.

C++ Toolkit Book Introduction to the C++ Toolkit

1-7

Files and Directories
An application may need access to information about a file or directory. The CORELIB provides a
number of portable classes to model a system file and directory. Some of the important classes
are CFile for modeling a file, CDir for modeling a directory, and CMemoryFile for memory
mapped file.

For example, if you create a CFile object corresponding to a system file, you can get the file's
attribute settings such as file size, permission settings, or check the existence of a file. You can
get the directory where the file is located, the base name of the file, and the file's extension.
There are also a number of useful functions that are made available through these classes to
parse a file path or build a file path from the component parts such as a directory, base name,
and extension.

More details on file and directory classes is presented in a later chapters.

MT Test wrappers
The CNcbiApplication class which was discussed earlier provides a framework for writing
portable applications. For writing portable multi-threaded applicatioms, the CORELIB provides a
CThreadedApp class derived from CNcbiApplication class which provides a framework for
building multi-threaded applications.

Instead of using the Init(), Run, Exit() methods for the CNcbiApplication class, the
CThreadedApp class defines specialized methods such as Thread_Init(), Thread_Run(),
Thread_Exit(), Thread_Destroy() for controlling thread behavior. These methods operate on a
specific thread identified by a thread index parameter.

Object and Ref classes
A major cause of errors in C/C++ programs is due to dynamic allocation of memory. Stated sim-
ply, memory for objects allocated using the new operator must be released by a corresponding
delete operator. Failure to delete allocated memory results in memory leaks. There may also be
programming errors caused by references to objects that have never been allocated or improp-
erly allocated. One reason these types of problems crop up are because a programmer may
dynamically allocate memory as needed, but may not deallocate it due to unanticipated execution
paths.

The C++ standard provides the use of a template class, auto_ptr , that wraps memory man-
agement inside constructors and destructors. Because a destructor is called for every constructed
object, memory allocation and deallocation can be kept symmetrical with respect to each other.
However, the auto_ptr does not properly handle the issue of ownership when multiple auto point-
ers, point to the same object. What is needed is a reference counted smart pointer that keeps a
count of the number of pointers pointing to the same object. An object can only be released when
its reference count drops to zero.

The CORELIB implements a portable reference counted smart pointer through the CRef and
CObject classes. The CRef class provides the interface methods to access the pointer and the
CObject is used to stores the object and the reference count.

More CObject classes are presented in a later chapter.

C++ Toolkit Book Introduction to the C++ Toolkit

1-8

Portability definitions
To help with portability, the CORELIB uses only those C/C++ standard types that have some
guarantees about size and representation. In particular, use of long, long long, float is not rec-
ommended for portable code.

To help with portability, integer types such as Int1, Uint1, Int2, Uint2, Int4, Uint4,

Int8, Uint8 have been defined with constant limits. For example, a signed integer of two bytes

size is defined as type Int2 with a minimum size of kMin_I2 and a maximum size of kMax_I2.

There are minimum and maximum limit constants defined for each of the different integer types.
More details on standard portable data types are presented in a later chapter.

Portable Exception Handling
C++ defines a structured exception handling mechanism to catch and process errors in a block of
code. When the error occurs an exception is thrown and caught by an exception handler. The
exception handler can then try to recover from the error, or process the error. In the C++ stan-
dard, there is only one exception class (std::exception), that stores a text message that can be
printed out. The information reported by the std::exception may not be enough for a complex sys-
tem. The CORELIB defines a portable CException class derived from std::exception class that
remedies the short comings of the standard exception class

The CORELIB defines a portable CException class derived from std::exception class. The
CException class in turn serves as a base class for many other exception classes specific to an
application area such as the CCoreException, CAppException, CArgException, CFileExcep-
tion, and so on. Each of these derived classes can add facilities specific to the application area
they deal with.

These exception classes provides many useful facilties such as a unique identification for
every exception that is thrown, the location (file name and line number) where the exception
occurred, references to lower-level exceptions that have already been thrown so that a more
complete picture of the chain of exceptions is available, ability to report the exception data into an
arbitrary output channel such as a diagnostic stream, and format the message differently for each
channel.

More details on exceptions and exception handling are presented in a later chapter.

Portable Process Pipes
A pipe is a common mechanism used to establish communications between two separate pro-
cessesis. The pipe serves as a communication channel between processes.

The CORELIB defines the CPipe class that provides a portable inter-process cimmunications
facility between a parent process and its child process. The pipe is created by specifying the
command and arguments used to start the child process and specifying the type of data channels
(text or binary) that will connect the processes. Data is sent acrross the pipe using the CPipe
read and write methods.

C++ Toolkit Book Introduction to the C++ Toolkit

1-9

Registry
The settings for an application are often read from a configuration or initialization file. This config-
uration file may define the parameters needed by the application. For example, many Unix pro-
grams read their parameter settings from configuration files. Similarly, Windows programs may
read and store information in an internal registry database, or an initialization file.

The NcbiRegistry class provides a portable facility to access, modify and store runtime infor-
mation read from a configuration file. The configuration file consists of sections. A section is
defined by a section header of the form [section-header-name]. Within each section, the param-
eters are defined using (name, value) pairs and represented as name=value strings. The syntax
closely resembles the '.ini' files used in Windows and also by Unix tools such as Samba.

More details on the Registry are presented in a later chapter.

STL Use Hints
To minimize naming conflicts, all NCBI code is placed in the ncbi name space. The CORELIB
defines a number of portable macros to help manage name space definitions. For example, you
can use the BEGIN_NAME_SPACE macro at the start of a section of code to place that code in the

specified name space. The END_NAME_SPACE macros is used to indicate the end the of the

name space definition. To declare the use of the NCBI namespace, the macros
USING_NCBI_SCOPE is used.

A number of macros have been defined to handle non-standard behavior of C++ compilers.
For example, a macro BREAK is defined, that is used to break out of a loop, instead of using the

break statement directly. This is done to handle a bug in the Sun WorkShop (pre 5.3 version)
compiler that fails to call destructors for objects created in for-loop initializers. Another example is
that some compilers (example, Sun Pro 4.2) do not understand the using namespace std; state-
ment. Therefore, for portable code, the using namespace statement should be prohibited.

More details on the use of portable macros are presented in a later chapter.

Stream Wrappers
Not all C++ compilers support the templated iostreams, <iostream>, definitions; many support
only the older non-templated <iostream.h> versions that place all definitions in a global name
space. Also, some implementations of <iostream< are buggy. To support portable behavior the
CORELIB defines the ncbistre.hpp file which triggers the proper inclusion of the appropriate
iostream version. Unless, otherwise specified, the older version of iostream.h, if available, is used
by default.

Once ncbistre.hpp has been included, the class definitions CNcbiIStream and
CNcbiOStream are used instead of the standard istream and ostream. And, NcbiCin and

NcbiCout are used instead of the standard cin and cout. CNcbiOstream and CNcbiIstream
are defined as C-language typedefs. On Solaris and Windows, these are identical to the standard
library output stream (ostream) and input stream (istream) classes. These typedefs are used on
older computers to switch between the old stream library and the new standard library stream
classes.

C++ Toolkit Book Introduction to the C++ Toolkit

1-10

More details on the portable time class are presented in a later chapter.

String Manipulations
C++ defines the standard string class that provides operations on strings. However, compilers
may exhibit non-portable string behavior especially with regards to multi-threaded programs. The
CORELIB provides portable string manipulation facilities through the NStr class that provides a
number of class-wide functions for string manipulation.

NStr portable functions include the string-to-X and X-to-string conversion functions where X is
a data type including a pointer type, string comparsions with and without case, pattern searches
within a string, string truncation, substring replacements, string splitting and join operations, string
tokenization, etc.

Template Utilities
The C++ Template clases support a number of useful template classes for data structures such
as vectors, lists. sets, maps, and so on.

The CORELIB defines a number of useful utility template classes. Some examples are tem-
plate classes and functions for checking for equality of objects through a pointer, checking for
non-null values of pointers, getting and setting map elements, deleting all elements from a con-
tainer of pointers where the container can be a list, vector, set, multiset, map or multimap.

More details on the template utilities are presented in a later chapter.

Threads
Applications can run faster, if they are structured to exploit any inherent parallelism in the applica-
tion's code execution paths. Code execution paths in an application can be assigned to separate
threads. When the application is run on a multiprocessor system, there can be significant
improvements in performance especially when threads run in parallel on separate processors.

The CORELIB defines a portable CThread class that can be used to provide basic thread
functionality such as thread creation, thread execution, thread termination, and thread cleanup.

To create user defined threads you need to derive your class from CThread, and override the
thread's Main() method and, and if necessary the OnExit() method for thread-specific cleanup.
Next, you create a thread object by instantiating the class you derived from CThread. Now you
are ready to launch thread execution by calling the thread's Run() method. The Run() method
starts thread execution and the thread will continue to run until it terminates. If you want the
thread to run independently of the parent thread you call the thread's Detach() method. If you
want to wait till the thread terminates, you call the thread's Join() method.

Synchronization between threads is provided through mutexes and read/write locks.
More details on threads and synchronization is presented in a later chapter.

http://cch.loria.fr/documentation/docSGI/STL_doc/string_discussion.html

C++ Toolkit Book Introduction to the C++ Toolkit

1-11

Time
The CTime class provides a portable interface to date and time functions. CTime can operate
with both local and UTC time, and can be used to store data and time at a particular moment or
elaspsed time. The time epoch is defined as Jan 1, 1900 so you cannot use CTime for storing
timestamps before Jan 1, 1900.

The CTime class can adjust for daylight savings time. For display purposes, the time format
can be set to a variety of time formats specified by a format string. For example, "M/D/Y h:m:s" for
a timestamp of "5/6/03 14:07:09". Additional time format specifiers are defined for full month
name (B), abbreviated month name (b), nanosecond (S), timezone fomat (Z), full weekday name
(W) and abbreviated weekday name (w).

A class CStopWatch is also available that acts as a stop watch and measures elapsed time
via the Elapsed() method, after its Start() method is called.

More details on threads and synchronization is presented in a later chapter.

The ALGORITHM Module
The ALGORITHM module is a collection of rigorously defined, often computationally intensive
algorithms performed on sequences. It is divided into three groups:

• ALIGN. A set of global alignment algorithms, including generic Needleman-Wunsch, a linear-
space Hirschberg's algorithm and a spliced (cDna/mRna-to-Genomic) alignment algorithm.

• BLAST. Basic Local Alignment Tool code and interface.

• SEQUENCE. Various algorithms on biological sequences, including antigenic determinant
prediction, CPG-island finder, ORF finder, string matcher and others.

The CGI Module
The CGI module provides an integrated framework for writing CGI applications. It consists of
classes that implement the CGI (Common Gateway Interface). These classes are used to retrieve
and parse an HTTP request, and then compose and deliver an HTTP response.

The CGI module consists of a number of classes. The interaction between these classes is
fairly complex, and therefore, not covered in this introductory chapter. We will attempt to only
identify the major classes in this overview, and cover the details of their interaction in later chap-
ters. Amongst the more important of the CGI classes are the CCgiApplication, CCgiContext,
CCgiRequest, CCgiResponse, and CCgiCookie.

The CCgiApplication is used to define the CGI application and is derived from the CNcbi-
Application discussed eariler. You write a CGI application by deriving application class from
CCgiApplication and providing an adaption of the Init(), Run(), and Exit() methods inherited from
the CNcbiApplication class. Details on how to implement the Init(), Run() and Exit() methods for
a CGI application are provided in a later chapter.

The CCgiRequest class is defined to receive and parse the request, and the CCgiResponse
class outputs the response to an output stream.

C++ Toolkit Book Introduction to the C++ Toolkit

1-12

The CCgiCookie class models a cookie. A cookie is a name, value string pair that can be
stored on the user's web browser in an attempt to remember a session state. All incoming CCgi-
Cookies are parsed and stored by the CCgiRequest object, and the outgoing cookies are sent
along with the response by the CCgiResponse object.

The CGI application executes in a 'context' defined by the CCgiContext class. The CCgi-
Context class provides a wrapper for the CCgiApplication, CCgiRequest and CCgiResponse
objects and drives the processing of input requests.

More details on CGI classes and their interactions are presented in a later chapter.

The CONNECT Module
The CONNECT module implements a variety of interfaces and classes dealing with making con-
nections to a network services. The core of the Connection Library is written in C which provides
a low level interface to the communication protocols. The CONNECT module provides C++ inter-
faces so that the objects have diagnostic and error handling capabilities that are consistent with
the rest of the toolkit. The standard sockets (SOCK) API is implemented on a variety of platforms
such as Unix, MS-Windows, MacOS, Darwin. The CONNECT module provides a higher level
access to the SOCK API by using C++ wrapper classes.

The following is a list of topics presented in this section:

• Socket classes

• Connector and Connection Handles

• Connection Streams

• Sendmail API

• Threaded Server

Socket classes
The C++ classes that implement the socket interface are CSocket, CDatagramSocket, CListen-
ingSocket, and CSocketAPI. The socket defines an end point for a connection which consists of
an IP address (or host name) of the end point, port number and transport protocol used (TCP,
UDP).

The CSocket class encapsulates the descriptions of both local and remote end points. The
local end point, which is the end point on the client issuing a connection request, is defined as
parameters to the CSocket constructor. The remote end point on which the network service is
running is specified as parameters to the Connect() method for the CSocket class. The CSocket
class defines additional methods to manage the connection such as Reconnect() to reconnect to
the same end point as the Connect() method; the Shutdown() method to terminate the connec-
tion; the Wait() method to wait on several sockets at once; the Read() and Write() methods to
read and write data via the socket; and a number of other support methods.

C++ Toolkit Book Introduction to the C++ Toolkit

1-13

The CSocket is designed for connection-oriented services such as those running over the
TCP transport protocol. For connectionless, or datagram services, such as those running over the
UDP transport protocol, you must use the CDatagramSocket class. The local end point is
defined as parameters to the CDatagramSocket constructor. The remote end point is specified
as parameters to the Connect() method for the CDatagramSocket class. Unlike the case of the
connection-oriented services, this Connect() method only specifies the default destination
address, and does not restrict the source address of the incoming messages. The methods Send
() and Recv() are used to send the datagram, and the method SetBroadcast() sets the socket to
broadcast messages sent to the datagram socket. The CDatagramSocket is derived from the
CSocket class but methods such as Shutdown() and Reconnect() that apply to connection-
oriented services are not available to users of the CDatagramSocket class.

The CListeningSocket is used by server-side applications to listen for connection requests.
The CListeningSocket constructor specifies the port to listen to and the size of the connection
request queue. You can change the port that the server application listens to any time by using
the Listen() method. The Accept() method accepts the connection request, and returns a
CSocket object through which data is transferred.

The CSocketAPI is a C++ wrapper for class-wide common socket utility functions available
for sockets such as the gethostname(), gethostbyaddr(), ntoa(), aton(), and so on.

Connector and Connection Handles
The SOCK interface is a relatively low-level interface for connection services. The CONNECT
module provides a generalization of this interface to connection services using a connection type
and specialized connectors.

A connection is modeled by a connection type and a connector type. The connector type
models the end point of the connection, and the connection type, the actual connection. Together,
the connector and connection objects are used to define the following types of connections:
socket, file, http, memory, and a general service connection.

The connector is described by a connector handle, CONNECTOR. CONNECTOR is a type-
def and defined as a pointer to an internal data structure.

The connection is described by a connection handle CONN. CONN is a typedef and defined
as a pointer to an internal structure. The CONN type is used as a parameter to a number of func-
tions that handle the connection such as CONN_Create(), CONN_ReInit(), CONN_Read(),
CONN_Write(), etc.

The CONNECTOR socket handle is created by a call to the SOCK_CreateConnector() func-
tion and passed the host name to connect to, the port number on the host to connect to, and
maximum number of retries. The CONNECTOR handle is then passed as an argument to the
CONN_Create() which returns a CONNECTION handle. The CONNECTION handle is then used
with the connection functions (that have the prefix CONN_) to process the connection. The con-
nection so created is bi-directional (full duplex) and input and output data can be processed
simultaneously.

C++ Toolkit Book Introduction to the C++ Toolkit

1-14

The other connector types, file, http, memory are similar to the socket connector type. In the
case of a file connector, the connector handle is created by calling the FILE_CreateConnector()
function and passed an input file and an output file. This connector could be used for both reading
and writing files, when input comes from one file, and output goes to another file. This differs from
normal file I/O when a single handle is used to access only one file, but resembles data exchange
via sockets, instead. In the case of the HTTP connection, the HTTP_CreateConnector type is
called and passed a pointer to network information structure, a pointer to a user-header consist-
ing of HTTP tag-values, and a bitmask representing flags that affect the HTTP response.

The general service connector is the most complex connector in the library, and can model
any type of service. It can be used for data transfer between an application and a named service.
The data can be sent via HTTP or directly as a byte stream (using SOCK directly). In the former
case it uses the HTTP connectors and in the latter the SOCK connectors. The general service
connector is used when the other connector types are not adequate for implementing the task on
hand.

More details on connector classes are presented in a later chapter.

Connection Streams
The CONNECT module provides a higher level of abstraction to connection programming in the
form of C++ connection stream classes derived from the standard iostream class. This makes the
familiar stream I/O operators, manipulators available to the connection stream. The main connec-
tion stream classes are the CConn_IOStream, CCon_SocketStream, CCon_HttpStream,
CCon_ServiceStream, and CCon_MemoryStream.

Figure 2 shows the relationship between the different stream classes. From this figure we can
see that CConn_IOStream is derived from the C++ iostream class and serves as a base class
for all the other connection stream classes. The CCon_IOStream allows input operations to be
be tied to the output operations so that any input attempt first flushes the output queue from the
internal buffers.

Figure 2: Connection stream classes

The CCon_SocketStream stream models a stream of bytes in a bi-directional TCP connec-
tion between two end points specified by a host/port pair. As the name suggests the socket
stream uses the socket interface directly. The CCon_HttpStream stream models a stream of
data between and HTTP client and an HTTP server (such as a web server). The server end of the
stream is identified by a URL of the the form http://host[:port]/path[?args]. the CCon_ServiceS-
tream stream models data transfer with a named service that can be found via dispatcher/load-

C++ Toolkit Book Introduction to the C++ Toolkit

1-15

balancing daemon and implemented as either HTTP CGI, standalone server, or NCBI service.
The CCon_MemoryStream stream models data transfer in memory similar to the C++ strstream
class.

More details on connection stream classes are presented in a later chapter.

Sendmail API
The CONNECT module provides a number of APIs that provide access to sendmail. Sendmail is
a popular MTA (Message Transfer Agent) found on many systems.

To initiate the use of sendmail. you must call the SendMailInfo_Int() function and pass it a
properly initialized structure containing information such as that expected in a mail header (To,
From, CC, BCC fields) and other communication settings. Then, you can send mail using the
CORE_SendMail() or CORE_SendMailEx() functions.

Threaded Server
The CONNECT moduel provides support for multithreaded servers through the CThreaded-
Server class. The CThreadedServer class is an abstract class for network servers and uses
thread pools. This class maintains a pool of threads, called worker threads, to process incoming
connections. Each connection gets assigned to one of the worker threads, allowing the server to
handle multiple requests in parallel while still checking for new requests.

You must derive your threaded server from the CThreadedServer class and define the Pro-
cess() method to indicate what to do with each incoming connection. The Process() method runs
asynchronously by using a separate thread for each request.

More details on threaded server classes are presented in a later chapter.

The CTOOL Module
The CTOOL module provides bridge mechansims and conversion functions. More specifically,
the CTOOL module provides a number of useful functions such as a bridge between the NCBI C+
+ Toolkit and the older C Toolkit for error handling, an ASN.1 connections stream that builds on
top of the connection stream, and an ASN converter that provides templates for converting
ASN.1-based objects between NCBI's C and C++ in-memory layouts.

The ASN.1 connections support is provides through functions CreateAsnConn() for creating
an ASN stream connection; CreateAsnConn_ServiceEx() for creating a service connection
using the service name, type and connection parameters; and CreateAsnConn_Service() which
is a specialized case of CreateAsnConn_ServiceEx() with some parameters set to zero.

The DBAPI Module
The DBAPI module supports object oriented access to databases by providing user classes that
model a database as a data source to which a connection can be made, and on which ordinary
SQL queries or stored procedure SQL queries can be issued. The results obtained can be navi-
gate using a result class or using the 'cursor' mechanism that is common to many databases.

C++ Toolkit Book Introduction to the C++ Toolkit

1-16

The user classes are used by a programmer to access the database. The user classes
depend upon a database driver to allow low level access to the underlying relational database
management system (RDBMS). Each type of RDBMS can be expected to have a different driver
that provides this low level hook into the database. The database drivers are architected to pro-
vide a uniform interface to the user classes so that the database driver can be changed to con-
nect to a different database without affecting the program code that makes use of the user
classes. For a list of the database drivers for different database that are supported, consult the
Supported DBAPI Drivers section in a later chapter.

The following is a list of topics presented in this section:

• Database User Classes

• Database Driver Architecture

Database User Classes
The interface to the database is provided by a number of C++ classes such as the IDataSource,
IDbConnection, IStatement, ICallableStatement, ICursor, IResultSet, IResultSetMetaData .
The user does not use these interfaces directly. Instead, the DBAPI module provides concrete
classes that implement these interface classes. The corresponding concrete classes for the
above mentioned interfaces are CDataSource, CDbConnection, CStatement,
CCallableStatement, CCursor, CResultSet, CResultSetMetaData.

Before accessing to a specific database, the user must register the driver with the CDriver-
Manager class which maintains the drivers registered for the application. The user does this by
using the CDriverManager class' factory method GetInstance() to create an instance of the
CDriverManager class and registering the driver with this driver manager object. For details on
how this can be done, consult the section Choosing the Driver in a later chapter.

After the driver has been registered, the user classes can be used to access that database.
There are a number of ways this can be done, but the most common method is to call the IData-
Source factory method CreateDs() to create an instance of the data source. Next, the Create-
Connection() method for the data source is called, to return a connection object that implements
the IConnection interface. Next, the connection object's Connect() method is called with the
user name, password, server name, database name to make the connection to the database.
Next, the connection object's CreateStatement() method is called to create a statement object
that implements the IStatement interface. Next, the statement object's Execute() method is
called to execute the query. Note that additional calls to the IConnection::CreateStatement()
results in cloning the connection for each statement which means that these connections inherit
the database which was specified in the Connect() or SetDatabase() method.

Executing the statement objects's Execute() method returns the result set which is stored in
the statement object and can be accessed using the statement object's GetResultSet() method.
You can then call the statement object's HasRows() method which returns a boolean true if there
are rows to be processed. The type of the result can be obtained by calling the IResultSet::

C++ Toolkit Book Introduction to the C++ Toolkit

1-17

GetResultType() method. The IStatement::ExecuteUpdate() method is used for SQL state-
ments that do not return rows (UPDATE or DELETE SQL statement), in which case the method
IStatement::GetRowCount() returns the number of updated or deleted rows.

Calling the IStatement::GetResultSet() returns the rows via the result set object that imple-
ments the IResultSet interface. The method IResultSet::Next() is used to fetch each row in the
result set and retruns a false when no more fetch data is available; otherwise, it returns a true. All
column data, except BLOB data is represented by a CVariant object. The method IResultSet::
GetVariant() takes the column number as its parameter where the first column has the start value
of 1.

The CVariant class is used to describe the fields of a record which can be of any data type.
The CVariant has a set of accessor methods (GetXXX()) to extract a value of a particular type.
For example, the GetInt4(), GetByte(), GetString(), methods will extract an Int4, Byte data value
from the CVariant object. If data extraction is not possible because of incompatible types, the
CVariantException is thrown. The CVariant has a set of factory methods for creating objects of
a particular data type, such as CVariant::BigInt() for Int8, CVariant::SmallDateTime() for
NCBI's CTime, and so on.

For details on sample code illustrating the above mentioned steps consult the sections Data
Source and Connections and Main Loop in a later chapter.

Database Driver Architecture
The driver can use two different methods to access the particular RDBMS. If RDBMS provides a
client library (CTLib) for a given computer system, then the driver utilizes this library. If there is no
client library, then the driver connects to RDBMS through a special gateway server which is run-
ning on a computer system where such library does exist.

the database driver architecture has two major groups of the driver's objects: the RDBMS
independent objects, and the RDBMS dependent objects specific to a RDBMS. From a user's
perspective, the most important RDBMS dependent object is the driver context object. A connec-
tion to the database is made by calling the driver context's Connect() method. All driver contexts
implement the same interface defined in the I_DriverContext class.

If the application needs to connect to RDBMS libraries from different vendors, there is a prob-
lem trying to link statically with the RDBMS libraries from different vendors. The reason for this is
that most of these libraries are written in C, and may use the same names which causes name
collisons. Therefore, the C_DriverMgr is used to overcome this problem and allow the creation of
a mixture of statically linked and dynamically loaded drivers and use them together in one exe-
cutable.

The low level connection to an RDBMS is specific to that RDBMS. To provide RDBMS inde-
pendence, the connection information is wrapped in an RDBMS independent object CDB_Con-
nection. The commands and the results are also wrapped in an RDBMS independent object. The
user is responsible for deleting these RDBMS independent objects because the life spans of the
RDBMS dependent and RDBMS independent objects are not necessarily the same.

C++ Toolkit Book Introduction to the C++ Toolkit

1-18

Once you have the CDB_Connection object, you can use it as a factory for the different
types of command objects. The command object's Result() method can be called to get the
results. To send and to receive the data through the driver you musr use the driver provided
datatypes such as CDB_BigInt, CDB_Float, CDB_SmallDateTime. These driver data types are
all derived from CDB_Object class.

More details on the database driver architecture is presented in a later chapter.

The GUI Module
The GUI Module has been designed for scientific visualization of biological sequences. The GUI
SEQ library describes and implements a set of objects needed to display and navigate molecule
sequences and features. The basic functionality allows the display a molecule sequence and fea-
tures, use mouse or keyboard to select parts of the sequence, get feature information, change
features shape, change various interface colors.

An advantage of using the SeqView is that you can have multiple sequence data sources and
can quickly and easily switch between them (see Figure 1 of the GUI chapter).

The Sequence View presented in Figure 1 of the GUI chapter relies on OpenGL, a widely
used graphical library for interactive 2D and 3D graphics applications; and FLTK a cross-platform
C++ GUI toolkit. FLTK is used to layout and display GUI elements. The graphical component lay-
out for the Sequence View can be quickly done using FLUID which is FLTK's UI (User Interface)
builder.

Three major classes are used to build the Sequence View. These are the CSeqView, CSeq-
Panel, and the CSeqDataSource. The CSeqView represents the displayed Sequence View itself
and consists of a CSeqPanel and FLTK's Fl_Scrollbar object. The CSeqPanel represents the
panel graphical element inherited from FLTK's Fl_Gl_Window class. The CSeqDataSource rep-
resents the bio sequence data source that is displayed. User defined sequence views are created
by deriving from the CSeqView class which also is used to handle all mouse and keyboard
events.

In order to set up a Sequence View, you have to create an instance of CSeqView, define
your data source by inheriting from CSeqDataSource and implementing the required methods,
and registering the data source with Sequence View.

More details on the GUI module is presented in a later chapter.

The HTML Module
The HTML module implements a number of HTML classes that are intended for use in CGI and
other programs. The HTML classes can be used to generate HTML code dynamically.

The HTML classes can be used to parse an HTML page and represent it internally in memory
as a graph. Each HTML element or tag is represented by a node in the graph. The attributes for
an HTML element are represented as attributes in the node. A node in the graph can have other
elements as children. For example, for an HTML page, the top HTML element will be described
by an HTML node in the graph. The HTML node will have the HEAD and BODY nodes as its chil-

C++ Toolkit Book Introduction to the C++ Toolkit

1-19

dren. The BODY node will have text data and other HTML nodes as its children. The graph
structure representation of an HTML page allows easy additions, deletions and modification of the
page elements.

The following is a list of topics presented in this section:

• Relationships between HTML classes

• HTML Processing

Relationships between HTML classes
The base class for all nodes in the graph structure for an HTML document is the CNCBINode.
The CNCBINode class is derived from CObject and provides the ability to add, delete, modify the
nodes in the graph. The ability to add and modify nodes is inherited by all the classes derived
from CNCBINode (see Figure 3). The classes derived from CNCBINode represent the HTML
elements on an HTML page. You can easily identify the HTML element that a class handles from
the class names such as CHTMLText, CHTMLButtonList, etc.

C++ Toolkit Book Introduction to the C++ Toolkit

1-20

Figure 3: HTML classes derived from CNCBINode

The text node classes CHTMLText and CHTMLPlainText are intended to be used directly by
the user. Both CHTMLText and CHTMLPlainText are used to insert text into the generated html,
with the difference that CHTMLPlainText class performs HTML encoding before generation. A
number of other classes such as CHTMLNode, CHTMLElement, CHTMLOpenElement, and
CHTMLListElement are base classes for the elements actually used to construct an HTML page,
such as CHTML_head, CHTML_form (see Figure 4).

The CHTMLNode class is the base class for CHTMLElement and CHTMLOpenElement
and is used for describing the HTML elements that are found in an HTML page such as HEAD,
BODY, H1, BR, etc. The CHTMLElement tag describes those tags that have a close tag and are
well formed. The CHTMLOpenElement class describes tags that are often found without the cor-
responding close tag such as the BR element that inserts a line break. The CHTMLListElement
class is used in lists such as the OL element.

C++ Toolkit Book Introduction to the C++ Toolkit

1-21

Figure 4: The CHTMLNode class and its derived classes

An important class of HTML elements used in forms to input data are the input elements such
as checkboxes, radio buttons, text fields, etc. The CHTML_input class derived from the
CHTML_OpenElement class serves as the base class for a variety of input elemens (see Figure
5)

Figure 5: The CHTML_input class and its derived classes

More details on HTML classes and their relationships is presented in a later chapter.

C++ Toolkit Book Introduction to the C++ Toolkit

1-22

HTML Processing
The HTML classes can be used to dynamially generate pages. In addition to the classes
described in the previous section, there are a number of page classes that are designed to help
with HTML processing. The page classes serve as generalized containers for collections of other
HTML components, which are mapped to the page. Figure 6 describes the important classes in
page class hierarchy.

Figure 6: HTML page classes

the CHTMLBasicPage class is as a base class whose features are inherited by the CHTML-
Page derived class - it is not intended for direct usage. Through the methods of this class, you
can access or set the CgiApplication, Style, and TagMap stored in the class.

The CHTMLPage class when used with the appropriate HTML template file, can generate the
'bolier plate' web pages such as a standard corporate web page, with a corporate logo, a hook for
an application-specific logo, a top menubar of links to several databases served by a query pro-
gram, a links sidebar for application-specific links to relevant sites, a VIEW tag for an application's
web interface, a bottom menubar for help links, disclaimers, and other boiler plate links. The tem-
plate file is a simple HTML text file with named tags (<@tagname@>) which allow the insertion of
new HTML blocks into a pre-formatted page.

More details on CHTMLBasicPage, CHTMLPage and related classes is presented in a later
chapter.

C++ Toolkit Book Introduction to the C++ Toolkit

1-23

The OBJECT MANAGER Module
The Object Manager module is a library of C++ classes, which facilitate access to biological
sequence data. It makes it possible to transparently download data from the GenBank database,
investigate biological sequence data structure, retrieve sequence data, descriptions and annota-
tions.

The Object Manager has been designed to present an interface to users that minimizes their
exposure to the details of interacting with biological databases and their underlying data struc-
tures. The Object Manager, therefore, coordinates the use of biological sequence data objects,
particularly the management of the details of loading data from different data sources.

The NCBI databases and software tools are designed around a particular model of biological
sequence data. The data model must be very flexible because the nature of this data is not yet
fully understood, and its fundamental properties and relationships are constantly being revised.
NCBI uses Abstract Syntax Notation One (ASN.1) as a formal language to describe biological
sequence data and its associated information.

The bio sequence data may be huge and downloading all of this data may not be practical or
desirable. Therefore, the Object Manager transparently transmits only the data that is really
needed, and not all of it at once. There is a datatool that generates corresponding data objects
(source code and header files) from the object's ASN.1 specification. The Object Manager is able
to manipulate these objects.

Biological sequences are identified by a Seq_id, which may have different forms.
The most general container object of bio sequence data, as defined in NCBI data model, is

Seq_entry. A great deal of NCBI software is designed to accept a Seq_entry as the primary unit
of data. In general, the Seq_entry is defined recursively as a tree of Seq_entry objects, where
each node contains either Bioseq or list of other Seq_entry objects and additional data like
sequence description, sequence annotations.

Two important concepts in the Object Manager are scope and reference resolution. The client
defines a scope as the sources of data where the system uses only "allowed" sources to look for
data. Scopes may contain several variants of the same bio sequence (Seq_entry). Since
sequences refer to each other, the scope sets may have some data that is common to both
scopes. In this case changing data in one scope should be reflected in all other scopes, which
"look" at the same data.

The other concept a client uses is reference resolution. Reference resolution is used in situa-
tions where different biological sequences can refer to each other. For example, a sequence of
amino acids may be the same as sequence of amino acids in an another sequence. The data
retrieval system should be able to resolve such references automatically answering what amino
acids are actually here. Optionally, at the client's request, such automatic resolution may be
turned off.

The Object Manager provides a consistent view of the data despite modifications to the data.
For example, the data may change during a client's session because new biological data has
been uploaded to the database while the client is still processing the old data. In this case, when
the client for additional data, the system should retrieve the original bio sequence data, and not

http://asn1.elibel.tm.fr/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/tools/datatool/datatool.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML

C++ Toolkit Book Introduction to the C++ Toolkit

1-24

the most recent one. However, if the database changes between a client's sessions, then the next
time the client session is started, the most recent data is retrieved, unless the client specifically
asks for the older data.

The Object Manager is thread safe, and supports multithreading which makes it possible to
work with bio sequence data from multiple threads.

The Object Manager includes numerous classes for accessing bio sequence data such as
CDataLoader and CDataSource which manage global and local accesses to data, CSeqVector
and CSeqMap objects to find and manipulate sequence data, a number of specialized iterators to
parse descriptions and annotations, among others. The CObjectManager and CScope classes
provide the foundation of the library, managing data objects and coordinating their interactions.

More details on the Object Manager and related classes is presented in a later chapter.

The SERIAL Module
The SERIAL Module provides serialization support for objects. Serialization provides persistence
of objects. Normally objects are transient and have an existence only when they are resident in
memory. When the application that controls these objects terminates, these objects are released
from memory. Using serialization, the objects in memory can be written out to an output stream
such as a file, and read back again when the program restarts. This type of application of serial-
ization is called Lightweight persistence and is used for the archival of objects to be used in a
later invocation of the same program. Another example of serialization is to pass objects between
independent processes. The processes could be running on different machines in which case the
objects could be serialized and passed via sockets using a sockets stream. This type of serializa-
tion is used in Remote Method Invocation (RMI) which requires objects to be passed between
processes.

Serializaing objects requires reading of an object from an input stream and writing of an
object to an output stream. The data that is read and written describes the object's internal struc-
ture and specifies an encoding scheme to encode the data. The input and output streams are
implemented as a set of object stream classes. The objects are described by using the classes
defined in the Object Manager module.

The base classes for the object stream classes are CObjectIStream and CObjectOStream.
All the specialized object stream format are handled by subclassing these base classes. Exam-
ples of these specialized formats including XML, binary ASN.1, and text ASN.1.

The SERIAL module implements specialized read (>>) and write (<<) operator methods for
these classes, so when the read or write operator method is used on an object, that object is read
from or written to the specified object stream.

The datatool is an important tool built using the SERIAL module classes. The datatool can be
used to generate C++ data storage classes based on the ASN.1 or DTD specifications. Addition-
ally, the datatool can be used to convert the ASN.1 specification into DTD and vice versa, and
convert data between ASN.1 and XML formats. For more information on the datatool please the
later chapter on tools.

The following sections describe the more important classes in the SERIAL module:

http://asn1.elibel.tm.fr
http://www.w3.org/TR/REC-xml

C++ Toolkit Book Introduction to the C++ Toolkit

1-25

• The Input Stream Class

• The Output Stream Class

• The Hook Classes

The Input Stream Class
As mentioned earlier, the CObjectIStream and CObjectOStream serve as important virtual base
classes for specialized object streams (see Figure X). These classes provide important method
interfaces for the specialized object stream classes CObjectIStreamXML and CObjec-
tOStreamXML for XML, CObjectIStreamAsnBinary and CObjectOStreamAsnBinary for binary
ASN.1, CObjectIStreamAsn and CObjectOStreamAsn for text ASN.1.

The methods whose interfaces are described in the CObjectIStream class include Open(),
Close(), GetDataFormat(), Read(), ReadObject(), ReadSeparateObject(), Skip(), SkipObject
(), GetDataHeader(), and ReadFileHeader().

The meanings of these methods are obvious from their names, but perhaps some methods
require some explanation. The GetDataFormat() returns the enumerated ESerialDataFormat
type for the stream. This enumerated type has values specific to each of the specialized formats.
For example, enumeration constants eSerial_XML for XML format, eSerial_AsnText for ASN.1
text format, and eSerial_AsnBinary for ASN.1 binary format. The ReadFileHeader() method
reads the first line from the file, and returns it in a string which can be used to compare against
string constants such as "Seq-entry" , "Bioseq-entry" to determine the nature of objects stored in
the input stream. In fact, the ReadFileHeader() method is called by the Read() method to deter-
mine the nature of objects in the stream.

The default behavior of Read() is to load the top-level object, along with all of its contained
subobjects into memory. In some cases this may use up considerable memory, and it may be
only the top-level object which is needed by the application. In this case, the method ReadObject
() can be used to load subobjects as persistent data members of the root object, and the method
ReadSeparateObject() can be used to load subobjects as temporary local objects.

The Skip() and SkipObject() methods allow entire top-level objects and subobjects to be
"skipped" while data is being read. The input is still read from the stream and validated, but no
object representation for that data is generated for the skipped objects. Instead, the data is stored
in a delay buffer associated with the object input stream, where it can be accessed as needed.
The Skip() should only be applied to top-level objects. The SkipObject() method may also be
used to skip subobjects of the root object.

The user can also install type-specific read, write, and copy hooks, which can change the
default behavior of loading objects where these hooks call the ReadSeparateObject() and
SkipObject() methods where needed.

More details on CObjectIStream and related classes is presented in a later chapter.

C++ Toolkit Book Introduction to the C++ Toolkit

1-26

The Output Stream Class
The output object stream classes complement the behavior of the CObjectIStream classes. The
CObjectOStream virtual base class is used to derive the CObjectOStreamXml, CObjec-
tOStreamAsn, and CObjectOStreamAsnBinary classes.

The methods whose interfaces are described in theCObjectOStream class include Open(),
Close(), GetDataFormat(), Write(), WriteObject(), WriteSeparateObject(), Flush(), Flush-
Buffer(), and WriteFileHeader().

The meanings of these methods are obvious from their names, but perhaps some methods
require some explanation. The GetDataFormat() returns the enumerated ESerialDataFormat
type for the stream. This enumerated type has values specific to each of the specialized formats.
For example, enumeration constants eSerial_XML for XML format, eSerial_AsnText for ASN.1
text format, and eSerial_AsnBinary for ASN.1 binary format. The WriteFileHeader() method
writes the first header line into the file that describes the file contents.This is the same line read
by the ReadFileHeader() method for the inputr stream classes derived from CObjectIStream.

The Write*() methods ccomplement the Read*() methods defined for the input streams. The
Write() first calls WriteFileHeader(), and then calls WriteObject(). The WriteSeparateObject()
can be used to write a temporary object and all its children objects as well, to the output stream. It
is also possible to install type-specific write hooks that serve as wrapper functions that define
what occurs immediately before and after the data is actually written.

More details on CObjectOStream and related classes is presented in a later chapter.

The Hook Classes
Since objects that need to be serialized can be very application-speciifc, the SERIAL module pro-
vides hook mechanisms, whereby the needed application-specific behavior can be installed in the
object's static class, CTypeInfo. These hooks can be installed globally, where they will be
applied on all streams where these events occur, or locally, where they will only be applied to a
selected stream.

For any given object and specific stream, at most one read hook and one write hook is
"active". If let's say for instance, an application-specific object myObject, has a locally installed

read hook as well as a global read hook, then the locally installed hook will override the global
hook when a read occurs on the "local" stream. Read events on all of the other "non-local"
streams will trigger the globally installed hook. You can have multiple read/write local and global
hooks for a selected object. Older or less specific hooks are overridden by the more specific or
most recently installed hooks.

The SERIAL module provides abstract base classes that are subclassed for creating new
hooks. For read hooks these are the CReadObjectHook, CReadClassMemberHook, and the
CReadChoiceVariantHook. These classes are defined for the different contexts in which an
object might be encountered on an input stream. For Write hooks these are the CWriteOb-
jectHook class, the CWriteClassMemberHook class, and the CWriteChoiceVariantHook.

These different contexts are when an object is encountered as a stand-alone object, as a
data member of a containing object, or as a variant of a choice object

C++ Toolkit Book Introduction to the C++ Toolkit

1-27

The UTIL Module
The UTIL module is collection of some very useful utility classes that implement I/O related func-
tions, algorithms, container classes, text related and thread related functions. Individual facilities
include classes to compute checksums, implement interval search trees, lightweight strings,
string search, linked sets, random number generation, UTF-8 conversions, registry based DNS,
rotating log streams, thread pools, and many others.

The following sections give an overview of the utility classes:

• Checksum

• Console Debug Dump Viewer

• Lightweight Strings

• Range Support

• Weak Map Templates

• Linked Sets

• Random Number Generator

• Registry based DNS

• Resizing Iterator

• Rotating Log Streams

• Stream Support

• String Search

• Thread Pools

• UTF 8 Conversion

Checksum
The Checksum class implements CRC32 (Cyclic Redundancy Checksum 32-bit) calculation. The
CRC32 is a 32-bit polynomial checksum that has many applications such as verifying the integrity
of a piece of data. The CChecksum class implements the CRC32 checksum that can be used to
compute the CRC of a sequence of byte values.

The checksum calculation is set up by creating a CChecksum object using the CChecksum
constructor and passing it the type of CRC to be calculated. Currently only CRC32 is defined, so
you must pass it the enumeration constant eCRC32 also defined in the classs.

C++ Toolkit Book Introduction to the C++ Toolkit

1-28

Data on which the checksum is to be computed is passed to the CChecksum'sAddLine() or
AddChars() method as a character array. As data is passed to these methods, the CRC is com-
puted and stored in the class. You can get the value of the computed CRC using the GetCheck-
sum() method. Alternatively, you can use the WriteChecksum() method and pass it a
CNcbiOstream object and have the CRC written to the output stream in the folllowing syntax:

/* Original file checksum: lines: nnnn, chars: nnnn, CRC32: xxxxxxxx */

Console Debug Dump Viewer
The UTIL module implements a simple Console Debug Dump Viewer that enables the printing of
object information on the console, through a simple console interface. Objects that can be
debugged must be inherited from CDebugDumpable class. The CObject is derived from CDe-
bugDumpable, and since most other objects are derived from CObject this makes these objects
'debuggable'.

The Console Debug Dump Viewer is implemented by the CDebugDumpViewer class. This
class implements a breakpoint method called Bpt(). This method is called with the name of the
object and a pointer to the object to be debugged. This method prompts the user for commands
that the user can type from the console:

Console Debug Dump Viewer
Stopped at testfile.cpp(120)
current object: myobj = xxxxxx
Available commands:
 t[ypeid] address
 d[ump] address depth
 go

The CDebugDumpViewer class also permits the enabling and disabling of debug dump
breakpoints from the registry.

Lightweight Strings
If you don't need the full functionality of the C++ string class, and want a lighter, and therefore,
more efficient version of a string class, you can use the CLightString class that can be used to
store character strings. Unlike the standard C++ string class, CLightString does not take owner-
ship of the string. So, the string data should exist for the duration of holding the CLightString
object. There is no explict destructor for the CLightStringclass, so the string data should be
deleted explicitly, if needed, after CLightString object destruction.

Another difference between the CLightString class and the standard C++ string class is that
CLightString compares first by string length, and then by string contents. Therefore, the string
"az" will sort before "abc", whereas in the standard lexicographial sort, "abc" will sort before "az".

More details on the CLightString class is presented in a later chapter.

C++ Toolkit Book Introduction to the C++ Toolkit

1-29

Range Support
The UTIL module provides a number of container classes that support a range which models an
interval consisting of a set of ordered values. the CRange class stores information about an inter-
val, [from, to], where the from and to points are inclusive. This is sometimes called a closed
interval.

Another class, the CRangeMap class, is similar to the CRange class but allows for the stor-
ing and retrieving of data using the interval as key. The time for iterating over the interval is
proportional to the amount of intervals produced by the iterator and may not be efficient in some
cases.

Another class, the CIntervalTree class, has the same functionality as the CRangeMap class
but uses a different algorithm; that is, one based on McCreight's algorithm. Unlike the
CRangeMap class, the CIntervalTree class allows several values to have the same key interval.
This class is faster and its speed is not affected by the type of data but it uses more memory
(about three times as much as CRangeMap) and, as a result, is less efficient when the amount of
interval in the set is quite big. For example, the CIntervalTree class becomes less efficient than
CRangeMap when the total memory becomes greater than processor cache.

More details on range classes is presented in a later chapter.

Weak Map Templates
The UTIL module provides two template classes, the CWeakMap class and the CWeakMapKey
class that provide an extension to the standard C++ STL map class with the additional feature
that it automatically removes elements from the map when corresponding key is 'destructed'.

The key is of type CWeakMapKey<Object> where the template parameter Object is typically
a string type, for character value keys.

More details on Weak Map classes is presented in a later chapter.

Linked Sets
The UTIL module defines a template container class, CLinkedMultiset, that can hold a a linked
list of multiset container types.

The CLinkedMultiset defines iterator methods begin(), end(), find(), lower_bound(),
upper_bound(), to help traverse the container. The method get(), fetches the contained value,
the method insert() inserts a new value into the container, and the method erase(), removes the
specified value from the container.

Random Number Generator
The UTIL module defines the CRandom class that can be used for generating 32-bit unsigned
random numbers. The random number generator algorithm is the Lagged Fibonacci Generator
(LFG) algorithm.

The random number generator is initialized with a seed value, and then the GetRandom()
method is called to get the next random number. You can also specify that the random number
value that is returned be in a speciifed range of values.

C++ Toolkit Book Introduction to the C++ Toolkit

1-30

Registry based DNS
The UTIL module defines the CSmallDns class that implements a simple registry based DNS
server. The CSmallDns class provides DNS name to IP address translations similar to a stan-
dard DNS server, except that the database used to store DNS name to IP address mappings is a
non-standard local database. The database of DNS names and IP address mappings are kept in
a registry-like file named by local_hosts_file using section [LOCAL_DNS].

The CSmallDns has two methods that are responsible for providing the DNS name to IP
address translations: the LocalResolveDNS method and the LocalBackResolveDNS method. The
LocalResolveDNS method does 'forward' name resolution. That is, given a host name, it returns a
string containing the IP address in the dotted decimal notation. The LocalBackResolveDNS
method does a 'reverse lookup'. That is, given an IP address as a dotted decimal notation string,
it returns the host name stored in the registry.

Resizing Iterator
The UTIL module defines two template classes, the CResizingIterator and the CConstResizin-
gIterator classes that handle sequences represented as packed sequences of elements of
different sizes For example, a vector <char> might actually hold 2-bit values, such as nucleotides,
or 32-bit integer values.

The purpose of these iterator clases is to provide iterator semantics for data values that can
be efficiently represented as a packed sequence of elements regardless of the size.

Rotating Log Streams
The UTIL module defines the CRotatingLogStream class that can be used to implement a rotat-
ing log file. The idea being that once the log of messages gets too large, a 'rotation' operation can
be performed. The default rotation is to rename the existing log file by appending it with a times-
tamp, and opening a new log.

The rotating log can be specified as a file, with an upper limit (in bytes) to how big the log will
grow. The CRotatingLogStream defines a method called Rotate() that implements the default
rotation.

Stream Support
The UTIL module defines a number of portable classes that provide additional stream support
beyond that provided by the standard C++ streams. The CByteSource class acts as an abstract
base class (see Figure 7), for a number of stream classes derived from it. As the name of the
other classes derived from CByteSource suggests, each of these classes provides the methods
from reading from the named source. To list a few examples: CFileByteSource is a specialized
class for reading from a named file; CMemoryByteSource is a specialized class for reading from
a memory buffer; CResultByteSource is a specialized class for reading database results;
CStreamByteSource is a specialized class from reading from the C++ input stream(istream);
CFStreamByteSource is a specialized class from reading from the C++ input file stream
(ifstream).

C++ Toolkit Book Introduction to the C++ Toolkit

1-31

Figure 7: Relationship between CByteSource and its derived classes

The classes such as CSubFileByteSource are used to define a slice of the source stream in
terms of a start position and a length. The read operations are then confined to this slice.

Additional classes, the CIStreamBuffer and the COStreamBuffer have been defined for
standard input and output buffer streams. These can be used in situations where a compiler's
implementation of the standard input and output stream buffering is inefficient.

More details on the stream classes are presented in a later chapter.

String Search
The UTIL module defines the CBoyerMooreMatcher class and the CFsmText class which are
used for searching for a single pattern over varying texts.

The CBoyerMooreMatcher class, as the name suggests, uses the Boyer-Moore algorithm
for string searches. The CFsmText is a template class that perfoms the search using a finite
state automaton for a specified to be matched data type. Since the matched data type is often a
string, the CTextFsa class is defined as a convenience by instantiating the CFsmText with the
matched type template parameter set to string.

The search can be setup as a case sensitive or case insensitive search. The default is case
sensitive search. In the case of the CBoyerMooreMatcher class, the search can be setup for any
pattern match or a whole word match. A whole word match means that a pattern was found to be
between white spaces. The default is any pattern match.

Thread Pools
The UTIL module defines a number of container classes to implement a pool of threads.

C++ Toolkit Book Introduction to the C++ Toolkit

1-32

The CPoolOfThreads is a template abstract class that defines an interface for a pool of
request-handling threads. The template parameter is for an arbitrary request type. The pool of
threads is defined by a maximum size, the number of threads in the pool, and a threshold param-
eter that creates another thread automatically when the difference between unfinished requests
and the number of threads in the pool exceeds this threshold.

The CStdRequest is an abstract class, derived from CObject, that is used to model requests
to the thread pool. The classes' interface method Process() is called when a thread handles the
request. The CStdRequest is not directly used in the thread classes, but through a smart pointer
implemented by CRef; that is, CRef<CStdRequest>

From the above two class definitions, a new class is derived to model a pool of threads, the
CStdPoolOfThreads. The class CStdPoolOfThreads is derived from the template class
CPoolOfThreadsby using CRef<CStdRequest> as the template parameter. Figure 8 shows the
relationship between these classes.

Figure 8: Relationship between pool of threads classes

The previously mentioned classes define a container or pool of threads. The actual threads
which are placed inside the pool are derived from the CThread class. The template class
CThreadInPool is an abstract class, derived from CThread, and models the threads in a pool.
The template parameter is for an arbitrary request type. The CStdThreadInPool is derived from
the CThreadInPool by using CRef<CStdRequest> as the template parameter.

To summarize, the concrete classes are CStdPoolOfThreads to model the pool of threads,
the CStdRequest to model the request, and the CStdThreadInPool to model the thread that is
placed in the pool.

The thread classes use the CBlockingQueue class internally to manage requests. The
CBlockingQueue class implements a blocking first-in-first-out queue container. The blocking
nature of this container class ensures that an attempt to extract an element from an empty queue
blocks efficiently until more elements are available.

More details on threaded pool classes is presented in a later chapter.

C++ Toolkit Book Introduction to the C++ Toolkit

1-33

UTF 8 Conversion
The UTIL module provides a number of functions to convert between UTF-8 representation,
ASCII 7-bit representation and Unicode represenataions. For example, StringToCode() converts
the first UTF-8 character in a string to a Unicode symbol, and StringToVector() converts a UTF-8
string into a vector of Unicode symbols.

The result of a conversion can be success, out of range, or a two character sequence of the
skip character (0xFF) followed by another character.

